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11-acetyl-24-desmethyl-stoloniferone C
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Abstract—The synthesis of 11a-acetoxy-5b,6b-epoxycholest-2-en-1-one, a compound containing the nuclear functionalities of the
stoloniferones, is described starting from dihydrocholesterol. © 2001 Published by Elsevier Science Ltd.

The Okinawan soft coral Clavularia viridis is a marine
invertebrate from which a remarkable array of bioac-
tive secondary metabolites has been obtained. Among
them the clavulones,1 powerful antitumor prostanoids,
the stoloniolides,2 structurally unique steroids, the
stoloniferones,3 such as the cytotoxic stoloniferon C 1
and its acetylated derivative 2,4 can be listed. It is
interesting to point out that most of the steroids iso-
lated from Clavularia viridis4,5 possess an epoxy-enone
moiety, which is a current feature in some withanolides6

and has been known as an important partial structure
of cytotoxic solanoceus plant products.7

Described herein is the synthesis of 11a-acetoxy-5b,6b-
epoxycholest-2-en-1-one 3, that is the 11-acetyl-24-
desmethylstoloniferone C 13 or the 24-desmethyl
analogue of the cytotoxic steroid 2.4

The synthesis of compound 3 began with the stereose-
lective functionalization of the C ring (Scheme 1). This
was easily achieved using the Breslow remote function-
alization methodology.8 Thus, commercially available

dihydrocholesterol 4 was converted into the expected
cholest-9(11)-en-3a-ol 6 via a three step process (77%
overall yield from 4 to 6).

Standard benzylation of 6 gave the D9(11)-steroidal ether
7. This was subjected to a highly stereoselective hydro-
boration-oxidation reaction9 (d.r.>95%, 1H NMR analy-
sis, 86% yield) to give the monobenzylated diol 8. The
equatorial nature of the alcoholic function at C-11 was
confirmed through unambiguous rationalization of the
1H NMR data of 8 which showed, for the C-11 methine
proton, a ddd (J=10.5, 10.5, 5.2 Hz) at d 3.91.

Silylation of the hindered C-11 hydroxy group with
tert-butyldimethylsilyl trifluoromethanesulfonate and
Pd-mediated debenzylation at C-3 afforded the monosi-
lylated diol 9 (83%, two steps).

For the A and B ring functionalization we planned
to follow a well established procedure10a including a
selective quadruple dehydrogenation of 9, transforma-
tion of the resulting trienone in the 11a-[(tert-butyl-
dimethylsilyl)oxy]-cholest-5-en-1a,3b-diol following the
Barton method,10 and final elaboration of the re-
quired a,b-unsaturated ketone and b-epoxide function-
alities.
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Scheme 1. (a) 1.2 equiv. of m-iodobenzoic acid, 1.8 equiv. of PPh3, 1.8 equiv. of DEAD, THF, rt, 12 h, 100%; (b) 0.3 equiv. of
(C6H5CO)2O2, 1 equiv. SO2Cl2, CCl4, reflux, 2 h, then 10% KOH in MeOH, reflux, 2 h, 77%; (c) 4 equiv. of NaH, 4 equiv. of
BnBr, 0.5 equiv. of TBAI, THF, reflux, 16 h, 84%; (d) 3 equiv. catechol borane, 0.7 equiv. of LiBH4, THF, 0°C, 3 h then
NaOH/H2O2, 50°C, 12 h, 86%; (e) 2 equiv. of lutidine, 1.5 equiv. of TBSOTf, THF, 0°C, 1 h, 97%; (f) H2/Pd, EtOH:AcOH
(200:1), 12 h, 86%.

The dehydrogenation of the monosilylated diol 9
(Scheme 2) proved particularly difficult to achieve. The
recent palladium-catalysed method, with allyl diethyl
phosphate (ADP) and sodium carbonate,11 gave no
reaction. The use of 2,3-dichloro-5,6-dicyano-1,4-benzo-
quinone (DDQ),12 furnished acceptable yields of the
expected trienone 10 (40–45% yield) only when the
reaction was performed with an excess of the oxidant (7
equivalents) and refluxing the reaction mixture in diox-
ane for 48 h.13 Treatment of 10 with alkaline hydrogen
peroxide gave stereoselectively only the expected a-
epoxydienone 11 whose stereochemistry was confirmed
by comparison with literature data.14

Birch reduction of 11, in order to obtain the expected
1a,3b-diol 12, which is a common practice at this
stage,10 invariably induced extensive decomposition of
the starting material. We attributed this unexpected
failure to the presence of the C-11 functionality. Desily-
lation of the secondary alcohol at C-11, to reduce the
steric hindrance on C-1, did not prove useful.

In view of these discouraging results we turned our
attention to a different two step reductive method
(Scheme 3). Thus, on treating the a-epoxydienone 11
with lithium aluminium hydride, cholesta-4,6-dien-

1a,3a,11a-triol 1315 was obtained. This was shown to
be epimeric at C-3 with the previously reported
cholesta-4,6-dien-1a,3b-diol.16 Finally a catalytic 1,4-
addition of hydrogen yielded the key intermediate
cholest-5-en-1a,3a,11a-triol 14, which was shown to be
epimeric at C-3 with the 24-methylene-cholesta-
1a,3b,11a-triol, isolated by Djerassi from the soft coral
Sinularia dissecta.17

Additional confirmation of the C-3 epimeric relation-
ship in 14 and the natural sterol was obtained by
acetylating 14 (pyridine/Ac2O, overnight, 91% yield)
and comparing the 1H NMR spectral data of the
3b,11a-diacetylated natural sterol 15, synthesized by
Djerassi,17 with the 3a,11a-diacetylated synthetic sterol
16 (3b,11a-diacetylated natural ; 3a-H : d 5.00, m;
3a,11a-diacetylated synthetic ; 3b-H : d 5.10, bs).

The diacetate 16 was subjected to a pyridinium dichro-
mate oxidation to provide the ketone 17 in 75% yield
(Scheme 4). The latter was easily transformed into the
2,5-dien-1-one 18, using Al2O3 in refluxing benzene.18

Epoxidation of 18 with m-CPBA18 gave a 1:1.6 mixture
of two isomeric19 5,6-epoxides, which were separated by
flash chromatography. The minor and less polar
product was the desired 5b,6b target epoxide 3.20

Scheme 2. (a) 7 equiv. DDQ, dioxane, reflux, 48 h, 40–45%; (b) H2O2/NaOH, MeOH, 36 h, 60%.

Scheme 3. (a) 6 equiv. LiAlH4, THF, reflux; (b) H2/Pt, EtOH, rt, 6 h, 30%, two steps.
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Scheme 4. (a) 2 equiv. of PDC, 3 A, molecular sieves, CH2Cl2, rt, 6 h, 75%; (b) Al2O3, benzene, reflux, 80%; (c) 2 equiv. MCPBA,
0.1 equiv. NaHCO3, CH2Cl2, 0°C, 5 h, 3 (28%); 19 (45%).

In summary the synthesis of A/B/C rings of stolonifer-
ones has been reported for the first time. In vitro
biomimetic studies on the formation of stoloniolides2

are currently underway.
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